首页> 外文OA文献 >Modeling of Transport, Chemical and Electrochemical Processes in Solid Oxide Fuel Cells
【2h】

Modeling of Transport, Chemical and Electrochemical Processes in Solid Oxide Fuel Cells

机译:固体氧化物燃料电池中运输,化学和电化学过程的模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The working of solid oxide fuel cells (SOFCs) involve fluid dynamics, chemical reactionsand electrochemical processes. These phenomena happen simultaneouslyin complex and sophisticated structures of the SOFC main components consistingof gas channels, porous electrodes, dense electrolyte and interconnects. Therefore,modeling of SOFCs with consideration of the detailed processes, which is indispensablyimportant in the development of the fuel cells, is not always an easy task.The chemical reactions include the steam reforming of methane and the water–gas shift reaction. The former occurs heterogeneously on the anode surface andhomogeneously in the fuel channel while the later occurs homogeneously everywherein the anode compartment. The electrochemical reactions are oxidation of hydrogenand/or carbon monoxide and reduction of oxygen, which take place at the so-called”three-phase boundaries” (TPBs) formed by the presence of all three of the electrode,the electrolyte and the gas phase. When ionic–electronic conducting compositeelectrodes are used, the TPBs extends from electrode–electrolyte interfaces into theelectrodes forming an electrochemically active layer with finite thickness.A numerical model for the detailed processes happening in SOFCs is always needed.Advantage of a model is that it can provide detailed insights into the cells thatcan not be gained by experiments. Additionally, it helps investigating impacts ofeach process parameter and their interaction, giving information for cell optimization.Modeling of SOFCs has been increasing rapidly during the last two decades,especially the last few years. However, models considering detailed processes takingplace at TPBs or considering effects of the composite electrodes are still relativelyrare.This thesis develops a detailed numerical model for planar solid oxide fuel cells.In this model, the electrochemical reactions are assumed to take place in the electrochemicallyactive (functional) layers of finite thickness. The thickness of these functional layers is up to 50μm, and depends among other things on the size ofthe particles from which the electrodes are made. The heat of the electrochemicalreactions is assumed to be released on the anode side. Moreover, steady-state electricalfield-driven transport of electrons and oxygen-ions in the composite electrodes–electrolyte assembly are modeled using an algorithm for Fickian diffusion built intothe commercial CFD package Star-CD.Moreover, in the developed model, one single computational domain includes theair and fuel channels, the electrodes–electrolyte assembly and/or the interconnects,and thus constitutes a single and continuous domain in which balances of mass, momentum,chemical species and energy associated with chemical and electrochemicalprocesses are solved simultaneously.The model is firstly applied to an anode-supported cell with co- and counter-flowconfigurations. The oxidation of carbon monoxide is included in this application,however, results show insignificant impact of it on performance of the cell. It isthen applied to a cathode-supported cell, which showed a better performance interms of temperature and current density distributions compared to the anodesupporteddesign. In these applications, the computational domain does not includethe interconnects and only variation along two directions (along the cell length anddirection normal to the electrolyte surface) are captured.The model is then applied to fully three-dimensional modeling of an anode-supportedcell. In this investigation, the interconnects are included, therefore, their effects onthe cell performance are observed.In addition to the studies mentioned above, a discussion on transport of oxygen ionsin the electrolyte is carried out. Some scenarios relating to ion fluxes are proposed,in which the Nernst–Planck and Poisson equations are solved for concentration ofions and potential distribution in the electrolyte.
机译:固体氧化物燃料电池(SOFC)的工作涉及流体动力学,化学反应和电化学过程。在由气体通道,多孔电极,致密电解质和互连线组成的SOFC主要组件的复杂结构中,这些现象同时发生。因此,在燃料电池的开发过程中考虑到详细过程而对SOFC进行建模并不是一件容易的事。化学反应包括甲烷的蒸汽重整和水煤气变换反应。前者在阳极表面上异质地发生,并且在燃料通道中均匀地发生,而后者在阳极室中的各处均匀地发生。电化学反应是氢气和/或一氧化碳的氧化和氧气的还原,它们发生在所谓的“三相边界”(TPB)处,该边界是由电极,电解质和气相中的所有三种存在而形成的。当使用离子-导电复合电极时,TPB从电极-电解质界面延伸到电极,形成厚度有限的电化学活性层。始终需要用于SOFC中发生的详细过程的数值模型。模型的优点是它可以提供无法通过实验获得的细胞的详细见解。此外,它还有助于调查每个工艺参数及其相互作用的影响,从而为电池优化提供信息。在过去的二十年中,尤其是在最近的几年中,SOFC的建模一直在迅速增长。然而,考虑到在TPB处发生详细过程或考虑复合电极的影响的模型仍然相对较少。本文建立了平面固体氧化物燃料电池的详细数值模型。在该模型中,假定电化学反应发生在电化学活性(功能层)。这些功能层的厚度最大为50μm,并且尤其取决于制成电极的颗粒的尺寸。假定电化学反应的热量在阳极侧释放。此外,使用内置在商用CFD软件包Star-CD中的Fickian扩散算法对复合电极-电解质组件中电子和氧离子在稳态电场驱动下的传输进行建模。此外,在开发的模型中,一个单独的计算域包括空气和燃料通道,电极-电解质组件和/或互连,因此构成一个单一且连续的域,在该域​​中,可以同时解决与化学和电化学过程相关的质量,动量,化学物质和能量的平衡。模型首先是应用于带有共流和逆流配置的阳极支撑电池。一氧化碳的氧化包括在该申请中,但是,结果表明其对电池性能的影响很小。然后将其应用于阴极支撑的电池,与阳极支撑的设计相比,它在温度和电流密度分布方面表现出更好的性能。在这些应用中,计算域不包括互连,仅捕获沿两个方向的变化(沿电池长度和垂直于电解质表面的方向),然后将模型应用于阳极支撑的电池的全三维建模。在这项研究中,包括互连,因此,观察到它们对电池性能的影响。除了上述研究以外,还讨论了氧离子在电解质中的传输。提出了一些与离子通量有关的方案,其中解决了Nernst-Planck和Poisson方程,以解决离子的浓度和电解质中的电势分布。

著录项

  • 作者

    Ho, Thinh Xuan;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号